Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@

## Annoucement

- [2025-04] πŸš€πŸš€ Introducing Aero-1-Audio β€” a compact yet mighty audio model. We have officially supports evaluation for Aero-1-Audio and it supports batched evaluations! Feel free to try out.

- [2025-02] πŸš€πŸš€ We have integrated [`vllm`](https://github.com/EvolvingLMMs-Lab/lmms-eval/pull/544) into our models, enabling accelerated evaluation for both multimodal and language models. Additionally, we have incorporated [`openai_compatible`](https://github.com/EvolvingLMMs-Lab/lmms-eval/pull/546) to support the evaluation of any API-based model that follows the OpenAI API format. Check the usages [here](https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/miscs/model_dryruns).

- [2025-01] πŸŽ“πŸŽ“ We have released our new benchmark: [Video-MMMU: Evaluating Knowledge Acquisition from Multi-Discipline Professional Videos](https://arxiv.org/abs/2501.13826). Please refer to the [project page](https://videommmu.github.io/) for more details.
Expand Down
13 changes: 13 additions & 0 deletions examples/models/aero_1_audio.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
TASK=open_asr_tedlium
CKPT_PATH=lmms-lab/Aero-1-Audio
echo $TASK
TASK_SUFFIX="${TASK//,/_}"
echo $TASK_SUFFIX

accelerate launch --num_processes 8 --main_process_port 30000 -m lmms_eval \
--model aero \
--model_args pretrained=$CKPT_PATH,attn_implementation="flash_attention_2" \
--tasks $TASK \
--batch_size 32 \
--log_samples_suffix $TASK_SUFFIX \
--output_path ./logs/ --verbosity DEBUG
1 change: 1 addition & 0 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
logger.add(sys.stdout, level="WARNING")

AVAILABLE_MODELS = {
"aero": "Aero",
"plm": "PerceptionLM",
"aria": "Aria",
"auroracap": "AuroraCap",
Expand Down
288 changes: 288 additions & 0 deletions lmms_eval/models/aero.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,288 @@
import os
import warnings
from typing import List, Optional, Tuple, Union

import librosa
import numpy as np
import PIL
import torch
from accelerate import Accelerator, DistributedType
from accelerate.state import AcceleratorState
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoProcessor

from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model
from lmms_eval.models.model_utils.audio_processing import downsample_audio

warnings.filterwarnings("ignore")

from loguru import logger as eval_logger

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_VIDEO_TOKEN = "<video>"
DEFAULT_AUDIO_TOKEN = "<|AUDIO|>"


@register_model("aero")
class Aero(lmms):
"""

Example usage:

accelerate launch --num_processes 8 --main_process_port 30000 -m lmms_eval \
--model aero \
--model_args pretrained=$CKPT_PATH,attn_implementation="flash_attention_2" \
--tasks $TASK \
--batch_size 1 \
--log_samples_suffix $TASK_SUFFIX \
--output_path ./logs/ --verbosity DEBUG

"""

def __init__(
self,
pretrained: str = "lmms-lab/Aero-1-Audio",
revision: str = "main",
device: str = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: int = 1,
trust_remote_code: Optional[bool] = True,
attn_implementation: Optional[str] = None,
device_map: str = "",
chat_template: Optional[str] = None,
use_cache: bool = True,
eos_token_id: int = 151645,
pad_token_id: int = 151643,
**kwargs,
) -> None:
super().__init__()
# Do not use kwargs for now
assert kwargs == {}, f"Unexpected kwargs: {kwargs}"

accelerator = Accelerator()
if accelerator.num_processes > 1 and device_map == "":
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.device_map = f"cuda:{accelerator.local_process_index}"
else:
self._device = torch.device(device)
self.device_map = device_map
if isinstance(dtype, str) and dtype != "auto":
dtype = getattr(torch, dtype)

self._model = AutoModelForCausalLM.from_pretrained(pretrained, revision=revision, torch_dtype=dtype, device_map=self.device_map, trust_remote_code=trust_remote_code, attn_implementation=attn_implementation)
self.pretrained = pretrained
self._processor = AutoProcessor.from_pretrained(pretrained, revision=revision, trust_remote_code=trust_remote_code)
# Pad from left for batched generation: https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/llava#usage-tips
self._processor.tokenizer.padding_side = "left"
self._tokenizer = self._processor.tokenizer
self._config = self._model.config
self.batch_size_per_gpu = int(batch_size)
self.chat_template = chat_template
self.use_cache = use_cache
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
if accelerator.num_processes > 1 and device_map == "":
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
elif accelerator.num_processes == 1 and device_map == "auto":
eval_logger.info(f"Using {accelerator.num_processes} devices with pipeline parallelism")
self._rank = 0
self._word_size = 1
else:
eval_logger.info(f"Using single device: {self._device}")
self.model.to(self._device)
self._rank = 0
self._word_size = 1
self.accelerator = accelerator

@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config

@property
def tokenizer(self):
return self._tokenizer

@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model

def split_audio(self, audio_arrays):
CHUNK_LIM = 480000
SAMPLE_RATE = 16000
audio_splits = []
# Split the loaded audio to 30s chunks and extend the messages content
for i in range(
0,
len(audio_arrays),
CHUNK_LIM,
):
audio_splits.append(audio_arrays[i : i + CHUNK_LIM])
return audio_splits

@property
def max_length(self):
return self._max_length

@property
def batch_size(self):
return self.batch_size_per_gpu

@property
def device(self):
return self._device

@property
def rank(self):
return self._rank

@property
def world_size(self):
return self._world_size

def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""" """
add_special_tokens = False if add_special_tokens is None else add_special_tokens
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding

def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
raise NotImplementedError("TODO: Implement loglikelihood for Kino")

def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list

def generate_until(self, requests: List[Instance]) -> List[str]:
res = []

def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]

# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
for chunk in chunks:
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
task = task[0]
split = split[0]
batched_visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
flattened_visuals = self.flatten(batched_visuals)
batched_messages = []
audios = []
for visuals in batched_visuals:
messages = [{"role": "user", "content": []}]
for visual in visuals:
if isinstance(visual, dict) and "array" in visual:
splited_video_audio = self.split_audio(downsample_audio(visual["array"], visual["sampling_rate"], self._processor.audio_processor.sampling_rate))
audios.extend(splited_video_audio)
for _ in range(len(splited_video_audio)):
messages[0]["content"].append({"type": "audio", "audio_url": "<placeholder>"})
batched_messages.append(messages)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]

context = contexts[0]
for batch_number, context in enumerate(contexts):
batched_messages[batch_number][0]["content"].append({"type": "text", "text": context})

text = self._processor.apply_chat_template(batched_messages, tokenize=False, add_generation_prompt=True)

if self.accelerator.is_main_process and doc_id[0] % 100 == 0:
eval_logger.debug(f"Prompt for doc ID {doc_id[0]}:\n\n{text}\n")

if len(audios) == 0:
audios = None

inputs = self._processor(audios=audios, text=text, sampling_rate=self._processor.audio_processor.sampling_rate, return_tensors="pt", padding=True).to(self._device, self.model.dtype)
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
try:
cont = self.model.generate(
**inputs,
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
)
cont = cont[:, inputs["input_ids"].shape[-1] :]
except Exception as e:
eval_logger.error(f"Error {e} in generating")
text_outputs = ""
res.append(text_outputs)
pbar.update(1)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), text_outputs)
continue
text_outputs = self.tokenizer.batch_decode(cont, skip_special_tokens=True)
if self.accelerator.is_main_process and doc_id[0] % 100 == 0:
eval_logger.debug(f"Generated text for doc ID {doc_id[0]}:\n\n{text_outputs}\n")

for output, context in zip(text_outputs, contexts):
res.append(output)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), output)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)

pbar.close()
return res

def generate_until_multi_round(self, requests) -> List[str]:
raise NotImplementedError("TODO: Implement multi-round generation for LLaVAHF")