|
| 1 | +import pandas as pd |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +from datetime import datetime, timedelta |
| 5 | +import matplotlib.dates as mdates |
| 6 | +from matplotlib.dates import DayLocator, HourLocator, DateFormatter, drange |
| 7 | +from graphql_query import get_PR_data |
| 8 | + |
| 9 | + |
| 10 | +def createDateColumn(dataframe): |
| 11 | + """This function will create a date column in |
| 12 | + the data frame which will have datetime type rather |
| 13 | + than a string type""" |
| 14 | + |
| 15 | + newDatecol = [] |
| 16 | + format_str = r"%Y-%m-%dT%H:%M:%SZ" |
| 17 | + for i in dataframe['node.mergedAt']: |
| 18 | + if (i is not None): |
| 19 | + # making the string to a datetime format |
| 20 | + newdate = datetime.strptime(i, format_str) |
| 21 | + # appending to the list as a date |
| 22 | + newDatecol.append(newdate.date()) |
| 23 | + if (i is None): |
| 24 | + newDatecol.append("None") |
| 25 | + dataframe['Date Merged'] = newDatecol |
| 26 | + |
| 27 | + return dataframe |
| 28 | + |
| 29 | + |
| 30 | +def numPRMerged_graph(df): |
| 31 | + """This function will create a graph for Num of Pr merged""" |
| 32 | + |
| 33 | + # get oldest and youngest dates from the list |
| 34 | + datelist = df['dates'] |
| 35 | + oldest = min(datelist) |
| 36 | + youngest = max(datelist) |
| 37 | + timegap = 12 |
| 38 | + dates = mdates.drange(oldest, youngest, timedelta(weeks=timegap)) |
| 39 | + # data |
| 40 | + counts = df['counts'] |
| 41 | + # Set up the axes and figure |
| 42 | + fig, ax = plt.subplots() |
| 43 | + # (To use the exact code below, you'll need to convert your sequence |
| 44 | + # of datetimes into matplotlib's float-based date format. |
| 45 | + # Use "dates = mdates.date2num(dates)" to convert them.) |
| 46 | + dates = mdates.date2num(dates) |
| 47 | + width = np.diff(dates).min() |
| 48 | + |
| 49 | + # Make a bar plot. Note that I'm using "dates" directly instead of plotting |
| 50 | + # "counts" against x-values of [0,1,2...] |
| 51 | + ax.bar(datelist, counts.tolist(), align='center', width=width, ec='blue') |
| 52 | + |
| 53 | + # Tell matplotlib to interpret the x-axis values as dates |
| 54 | + ax.xaxis_date() |
| 55 | + |
| 56 | + # Make space for and rotate the x-axis tick labels |
| 57 | + fig.autofmt_xdate() |
| 58 | + plt.ylabel('Counts') |
| 59 | + plt.xlabel('Dates') |
| 60 | + plt.title('Number of PRs merged over time') |
| 61 | + plt.savefig('PRmergeRates.png', dpi=400) |
| 62 | + plt.show() |
| 63 | + |
| 64 | + |
| 65 | +def computeMergetime(created_at, merged_at): |
| 66 | + """This function will calculate the merge time""" |
| 67 | + |
| 68 | + format_str = r"%Y-%m-%dT%H:%M:%SZ" |
| 69 | + date_created = datetime.strptime(created_at, format_str) |
| 70 | + date_merged = datetime.strptime(merged_at, format_str) |
| 71 | + # return diff in days [86400 secs in a day] |
| 72 | + time_diff = (date_merged - date_created).total_seconds() / 86400 |
| 73 | + return int(time_diff) |
| 74 | + |
| 75 | + |
| 76 | +def addlabels(x, y): |
| 77 | + """create labels for bars in bar chart""" |
| 78 | + |
| 79 | + for i in range(len(x)): |
| 80 | + plt.text(i, y[i], y[i], ha='center') |
| 81 | + |
| 82 | + |
| 83 | +def avgMergetime_graph(df): |
| 84 | + """This function will create a graph for avg merge time""" |
| 85 | + |
| 86 | + x = df['Merged_YM'] |
| 87 | + y = df['mergetime'] |
| 88 | + fig, ax = plt.subplots() |
| 89 | + x_pos = np.arange(len(x)) # <-- |
| 90 | + plt.bar(x_pos, y) |
| 91 | + plt.xticks(x_pos, x) # <-- |
| 92 | + # Make space for and rotate the x-axis tick labels |
| 93 | + fig.autofmt_xdate() |
| 94 | + ax.xaxis_date() |
| 95 | + addlabels(x, y) |
| 96 | + plt.xlabel("Dates") |
| 97 | + plt.ylabel("Merge Time in Days") |
| 98 | + plt.title("Avg Merge Times") |
| 99 | + plt.savefig('AvgMergeTimes.png', dpi=400) |
| 100 | + plt.show() |
| 101 | + |
| 102 | + |
| 103 | +def avgMergetime(df): |
| 104 | + """ This function will be called to calculate |
| 105 | + the avg mergetime and produce a graph""" |
| 106 | + |
| 107 | + # 1. calculate the mergetime for each PR and add to the dataframe |
| 108 | + mergetime_ = [] |
| 109 | + |
| 110 | + for index, row in df.iterrows(): |
| 111 | + if (row.loc['node.mergedAt'] is not None): |
| 112 | + mergetime = computeMergetime(row.loc['node.createdAt'], |
| 113 | + row.loc['node.mergedAt']) |
| 114 | + mergetime_.append(mergetime) |
| 115 | + else: |
| 116 | + mergetime_.append("None") |
| 117 | + df['mergetime'] = mergetime_ |
| 118 | + |
| 119 | + # 2. calculate the average merge time for each month |
| 120 | + df['Merged_YM'] = pd.to_datetime(df['node.mergedAt']).dt.to_period('M') |
| 121 | + new_df = df.filter(['Merged_YM', 'mergetime'], axis=1) |
| 122 | + group_mean = new_df.groupby('Merged_YM')['mergetime'].mean() |
| 123 | + mean_df = group_mean.reset_index() |
| 124 | + # change from float to int |
| 125 | + mean_df['mergetime'] = mean_df.mergetime.astype(int) |
| 126 | + |
| 127 | + # 3. create a bar graph |
| 128 | + avgMergetime_graph(mean_df) |
| 129 | + |
| 130 | + |
| 131 | +def getMonthlyPRinfo(df): |
| 132 | + """Retrieve the info of PRs merged in |
| 133 | + each month in history and create csv file""" |
| 134 | + |
| 135 | + new_df = df.filter(['Merged_YM', 'node.title', 'node.url'], axis=1) |
| 136 | + new_df.groupby('Merged_YM') |
| 137 | + new_df.to_csv('PR_Info_Monthly.csv', index=False) |
| 138 | + |
| 139 | + |
| 140 | +def process_data(dataframe): |
| 141 | + """This function will be called in the main() |
| 142 | + to process the data gathered from the query |
| 143 | + and create a dataframe""" |
| 144 | + |
| 145 | + # add a new column for just the date in date format |
| 146 | + dataframe = createDateColumn(dataframe) |
| 147 | + # get the frequency of each date |
| 148 | + frequency = dataframe['Date Merged'].value_counts() |
| 149 | + # converting to df and assigning new names to the columns |
| 150 | + df_value_counts = pd.DataFrame(frequency) |
| 151 | + df_value_counts = df_value_counts.reset_index() |
| 152 | + # change column names |
| 153 | + df_value_counts.columns = ['dates', 'counts'] |
| 154 | + # delete the the row with None |
| 155 | + dateFreq = df_value_counts.loc[df_value_counts["dates"] != "None"] |
| 156 | + |
| 157 | + # 1. Create a graph for number of PRs merged over time |
| 158 | + numPRMerged_graph(dateFreq) |
| 159 | + # 2. Create a graph for avg PR merge time |
| 160 | + avgMergetime(dataframe) |
| 161 | + # 3. A table with PR info for each month |
| 162 | + getMonthlyPRinfo(dataframe) |
| 163 | + |
| 164 | + |
| 165 | +def main(): |
| 166 | + # get data from the graphql query |
| 167 | + pr_cursor = None |
| 168 | + res_data = get_PR_data(pr_cursor) |
| 169 | + process_data(res_data) |
| 170 | + |
| 171 | + |
| 172 | +main() |
0 commit comments