Don't waste time on setting up a deep learning environment while you can get a deep learning environment with everything pre-installed.
- conda
- Jupyter lab
- Matplotlib
- NLTK
- Numpy
- Pandas
- Plotly
- PyTorch
- Scikit-Learn
- Seaborn
- TensorFlow
- uv
- zellij
You can see the full list of tags https://hub.docker.com/r/matifali/dockerdl/tags.
- Docker
- nvidia-container-toolkit 1
- Linux, or Windows with WSL2
docker run --gpus all --rm -it -h dockerdl matifali/dockerdl bashdocker run --gpus all --rm -it -h dockerdl -p 8888:8888 matifali/dockerdl jupyter lab --no-browser --port 8888 --ServerApp.token='' --ip='*'Connect by opening http://localhost:8888 in your browser.
git clone https://github.com/matifali/dockerdl.gitModify the corresponding [Dockerfile] to add or delete packages.
Note
You may have to rebuild the dockerdl-base if you are building a custom image and then use it as a base image. See Build section.
The following --build-arg are available for the dockerdl-base image.
| Argument | Description | Default | Possible Values |
|---|---|---|---|
CUDA_VER |
CUDA version | 13.0.2 |
|
UBUNTU_VER |
Ubuntu version | 24.04 |
24.04, 22.04 |
Warning
Not all combinations of --build-arg are tested.
Build the base image
docker build -t dockerdl-base:latest --build-arg CUDA_VER=13.0.2 --build-arg UBUNTU_VER=24.04 -f base.Dockerfile .Build the image you want with the base image as the base image.
docker build -t dockerdl:tf --build-arg TF_VERSION=2.12.0 -f tf.Dockerfile .or
docker build -t dockerdl:torch --build-arg -f torch.Dockerfile .- Install Coder. (https://github.com/coder/coder).
- Use deeplearning template which references these images (https://github.com/matifali/coder-templates/tree/main/deeplearning).
Follow the instructions here.
If you find any issue please feel free to create an issue and submit a PR.
Footnotes
-
This image is based on nvidia/cuda and uses nvidia-container-toolkit to access the GPU. ↩
