Skip to content

Commit 983e722

Browse files
Add Docusaurus version latest
- Created version snapshot in versioned_docs/version-latest/ - Updated versions.json with new version - Built and deployed multi-version site 🤖 Generated by Docusaurus versioning workflow
1 parent 0353e5e commit 983e722

File tree

1 file changed

+15
-56
lines changed

1 file changed

+15
-56
lines changed

versioned_docs/version-v0.3.3/getting_started/quickstart.mdx

Lines changed: 15 additions & 56 deletions
Original file line numberDiff line numberDiff line change
@@ -42,68 +42,27 @@ Now open up a new terminal and copy the following script into a file named `demo
4242
# This source code is licensed under the terms described in the LICENSE file in
4343
# the root directory of this source tree.
4444

45-
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
4645

47-
vector_db_id = "my_demo_vector_db"
48-
client = LlamaStackClient(base_url="http://localhost:8321")
46+
import io, requests
47+
from openai import OpenAI
4948

50-
models = client.models.list()
49+
url="https://www.paulgraham.com/greatwork.html"
50+
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
5151

52-
# Select the first LLM and first embedding models
53-
model_id = next(m for m in models if m.model_type == "llm").identifier
54-
embedding_model_id = (
55-
em := next(m for m in models if m.model_type == "embedding")
56-
).identifier
57-
embedding_dimension = em.metadata["embedding_dimension"]
52+
vs = client.vector_stores.create()
53+
response = requests.get(url)
54+
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
55+
uploaded_file = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants")
56+
client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
5857

59-
vector_db = client.vector_dbs.register(
60-
vector_db_id=vector_db_id,
61-
embedding_model=embedding_model_id,
62-
embedding_dimension=embedding_dimension,
63-
provider_id="faiss",
64-
)
65-
vector_db_id = vector_db.identifier
66-
source = "https://www.paulgraham.com/greatwork.html"
67-
print("rag_tool> Ingesting document:", source)
68-
document = RAGDocument(
69-
document_id="document_1",
70-
content=source,
71-
mime_type="text/html",
72-
metadata={},
73-
)
74-
client.tool_runtime.rag_tool.insert(
75-
documents=[document],
76-
vector_db_id=vector_db_id,
77-
chunk_size_in_tokens=100,
78-
)
79-
agent = Agent(
80-
client,
81-
model=model_id,
82-
instructions="You are a helpful assistant",
83-
tools=[
84-
{
85-
"name": "builtin::rag/knowledge_search",
86-
"args": {"vector_db_ids": [vector_db_id]},
87-
}
88-
],
89-
)
90-
91-
prompt = "How do you do great work?"
92-
print("prompt>", prompt)
93-
94-
use_stream = True
95-
response = agent.create_turn(
96-
messages=[{"role": "user", "content": prompt}],
97-
session_id=agent.create_session("rag_session"),
98-
stream=use_stream,
58+
resp = client.responses.create(
59+
model="openai/gpt-4o",
60+
input="How do you do great work? Use the existing knowledge_search tool.",
61+
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
62+
include=["file_search_call.results"],
9963
)
10064

101-
# Only call `AgentEventLogger().log(response)` for streaming responses.
102-
if use_stream:
103-
for log in AgentEventLogger().log(response):
104-
log.print()
105-
else:
106-
print(response)
65+
print(resp)
10766
```
10867
We will use `uv` to run the script
10968
```

0 commit comments

Comments
 (0)