|
| 1 | +package xhash |
| 2 | + |
| 3 | +import ( |
| 4 | + "math/big" |
| 5 | +) |
| 6 | + |
| 7 | +// ASERT params |
| 8 | +const ( |
| 9 | + asertIdealBlockTime = int64(600) // seconds |
| 10 | + asertHalflife = int64(172800) // 2 days in seconds |
| 11 | + asertRadix = int64(1 << 16) // fixed-point radix (2^16) |
| 12 | +) |
| 13 | + |
| 14 | +// Polynomial coefficients for 2^x cubic approximation (from BCH spec) |
| 15 | +const ( |
| 16 | + asertPolyA = uint64(195766423245049) |
| 17 | + asertPolyB = uint64(971821376) |
| 18 | + asertPolyC = uint64(5127) |
| 19 | +) |
| 20 | + |
| 21 | +// ASERTNextTarget computes the next target using the aserti3-2d algorithm. |
| 22 | +// All math here is integer-only and matches the BCH specification. |
| 23 | +// |
| 24 | +// anchorHeight = height of anchor block |
| 25 | +// anchorParentTime = timestamp (Unix seconds) of parent of anchor block |
| 26 | +// anchorTarget = integer target value of anchor block |
| 27 | +// evalHeight = height of evaluation block |
| 28 | +// evalTime = timestamp of evaluation block |
| 29 | +// maxTarget = maximum allowed target (easiest difficulty) |
| 30 | +// |
| 31 | +// Returns the target for the next block after the evaluation block. |
| 32 | +func ASERTNextTarget( |
| 33 | + anchorHeight int64, |
| 34 | + anchorParentTime int64, |
| 35 | + anchorTarget *big.Int, |
| 36 | + evalHeight int64, |
| 37 | + evalTime int64, |
| 38 | + maxTarget *big.Int, |
| 39 | +) *big.Int { |
| 40 | + if anchorHeight <= 0 { |
| 41 | + panic("ASERTNextTarget: anchorHeight must be > 0") |
| 42 | + } |
| 43 | + if anchorTarget.Sign() <= 0 { |
| 44 | + panic("ASERTNextTarget: anchorTarget must be > 0") |
| 45 | + } |
| 46 | + if maxTarget.Sign() <= 0 { |
| 47 | + panic("ASERTNextTarget: maxTarget must be > 0") |
| 48 | + } |
| 49 | + |
| 50 | + timeDelta := evalTime - anchorParentTime |
| 51 | + heightDelta := evalHeight - anchorHeight |
| 52 | + |
| 53 | + // Use truncating integer division (Go's / on ints already truncates toward zero) |
| 54 | + numBlocks := heightDelta + 1 |
| 55 | + exponent := ((timeDelta - asertIdealBlockTime*numBlocks) * asertRadix) / asertHalflife |
| 56 | + |
| 57 | + numShifts := exponent >> 16 |
| 58 | + |
| 59 | + // Keep 16-bit fractional part |
| 60 | + exponent -= numShifts * asertRadix |
| 61 | + |
| 62 | + // Now compute the cubic approximation factor in 16.16 fixed point. |
| 63 | + // We interpret exponent as a signed 64-bit, but pass it to the poly as uint64 |
| 64 | + // so we get the same 2's-complement behavior as the BCH reference. |
| 65 | + ux := uint64(exponent) |
| 66 | + |
| 67 | + // factor = ((A*x + B*x^2 + C*x^3 + 2^47) >> 48) + 2^16 |
| 68 | + // This yields a multiplier in 16.16 fixed point. |
| 69 | + x2 := ux * ux |
| 70 | + x3 := x2 * ux |
| 71 | + |
| 72 | + poly := asertPolyA*ux + asertPolyB*x2 + asertPolyC*x3 + (uint64(1) << 47) |
| 73 | + factor := (poly >> 48) + uint64(asertRadix) // + 2^16 |
| 74 | + |
| 75 | + next := new(big.Int).Mul(anchorTarget, new(big.Int).SetUint64(factor)) |
| 76 | + |
| 77 | + // Apply the 2^numShifts factor: |
| 78 | + if numShifts < 0 { |
| 79 | + // Right-shift by -numShifts |
| 80 | + next.Rsh(next, uint(-numShifts)) |
| 81 | + } else if numShifts > 0 { |
| 82 | + // Left-shift by numShifts |
| 83 | + next.Lsh(next, uint(numShifts)) |
| 84 | + } |
| 85 | + |
| 86 | + // Divide by 2^16 to remove fixed-point scaling |
| 87 | + next.Rsh(next, 16) |
| 88 | + |
| 89 | + // Clamp to valid range |
| 90 | + if next.Sign() <= 0 { |
| 91 | + next.SetInt64(1) |
| 92 | + return next |
| 93 | + } |
| 94 | + if next.Cmp(maxTarget) > 0 { |
| 95 | + next = new(big.Int).Set(maxTarget) |
| 96 | + } |
| 97 | + return next |
| 98 | +} |
| 99 | + |
| 100 | +// difficultyToTarget: target = floor((2^256-1) / difficulty) |
| 101 | +func difficultyToTarget(d *big.Int) *big.Int { |
| 102 | + if d.Sign() <= 0 { |
| 103 | + // avoid div by zero; treat as max difficulty → min target |
| 104 | + return new(big.Int).SetInt64(1) |
| 105 | + } |
| 106 | + t := new(big.Int).Div(new(big.Int).Set(two256m1), d) |
| 107 | + if t.Sign() <= 0 { |
| 108 | + t.SetInt64(1) |
| 109 | + } |
| 110 | + return t |
| 111 | +} |
| 112 | + |
| 113 | +// targetToDifficulty: difficulty = floor((2^256-1) / target) |
| 114 | +func targetToDifficulty(t *big.Int) *big.Int { |
| 115 | + if t.Sign() <= 0 { |
| 116 | + // avoid div by zero; treat as easiest target → difficulty = 1 |
| 117 | + return big.NewInt(1) |
| 118 | + } |
| 119 | + d := new(big.Int).Div(new(big.Int).Set(two256m1), t) |
| 120 | + if d.Sign() <= 0 { |
| 121 | + d.SetInt64(1) |
| 122 | + } |
| 123 | + return d |
| 124 | +} |
0 commit comments