Skip to content

Bad Performance of llama-2-70b in Humaneval Benchmark #3427

@DarkenStar

Description

@DarkenStar

I use command below to test llama-2-70b-hf model with humaneval benchmark

export CUDA_VISIBLE_DEVICES=0,1,2,3
export HF_ALLOW_CODE_EVAL="1"
python -m lm_eval    \
 --model hf     \
--model_args pretrained=/home/shared/models/meta-llama/Llama-2-70b-hf/,parallelize=True   \
  --tasks humaneval  \
   --confirm_run_unsafe_code   \
  --show_config   \
  --log_samples   \
  --batch_size 1 \
 --output_path ./eval

but the result is very unusual with only 0.0183 pass@1, here are my result and configuration

INFO:lm_eval.loggers.evaluation_tracker:Saving results aggregated
INFO:lm_eval.loggers.evaluation_tracker:Saving per-sample results for: humaneval
hf (pretrained=/home/shared/models/meta-llama/Llama-2-70b-hf/,parallelize=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
|  Tasks  |Version|  Filter   |n-shot|Metric|   |Value |   |Stderr|
|---------|------:|-----------|-----:|------|---|-----:|---|-----:|
|humaneval|      1|create_test|     0|pass@1|   |0.0183|±  |0.0105|
{
  "results": {
    "humaneval": {
      "alias": "humaneval",
      "pass@1,create_test": 0.018292682926829267,
      "pass@1_stderr,create_test": 0.010496292269168305
    }
  },
  "group_subtasks": {
    "humaneval": []
  },
  "configs": {
    "humaneval": {
      "task": "humaneval",
      "dataset_path": "openai/openai_humaneval",
      "test_split": "test",
      "doc_to_text": "{{prompt}}",
      "doc_to_target": "{{test}}\ncheck({{entry_point}})",
      "unsafe_code": true,
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "def pass_at_k(references: list[str], predictions: list[list[str]], k: list[int] = None):\n    global compute_\n    assert k is not None\n    if isinstance(k, int):\n        k = [k]\n    res = compute_.compute(\n        references=references,\n        predictions=predictions,\n        k=k,\n    )\n    return res[0]\n",
          "aggregation": "mean",
          "higher_is_better": true,
          "k": [
            1
          ]
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "\nclass",
          "\ndef",
          "\n#",
          "\nif",
          "\nprint"
        ],
        "max_gen_toks": 1024,
        "do_sample": false
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "create_test",
          "filter": [
            {
              "function": "custom",
              "filter_fn": "<function build_predictions at 0x7f81e4c91120>"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0,
        "pretrained": "/home/shared/models/meta-llama/Llama-2-70b-hf/",
        "parallelize": true
      }
    }
  },
  "versions": {
    "humaneval": 1.0
  },
  "n-shot": {
    "humaneval": 0
  },
  "higher_is_better": {
    "humaneval": {
      "pass_at_k": true
    }
  },
  "n-samples": {
    "humaneval": {
      "original": 164,
      "effective": 164
    }
  },
  "config": {
    "model": "hf",
    "model_args": "pretrained=/home/shared/models/meta-llama/Llama-2-70b-hf/,parallelize=True",
    "model_num_parameters": 68976648192,
    "model_dtype": "torch.float16",
    "model_revision": "main",
    "model_sha": "",
    "batch_size": "1",
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "7ddb2b1",
  "date": 1764037905.2037978,
    "pretty_env_info": "PyTorch version: 2.8.0+cu128\nIs debug build: False\nCUDA used to build PyTorch: 12.8\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 24.04.2 LTS (x86_64)\nGCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0\nClang version: Could not collect\nCMake version: version 4.1.0\nLibc version: glibc-2.39\n\nPython version: 3.12.3 (main, Feb  4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.39\nIs CUDA available: True\nCUDA runtime version: Could not collect\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H20-3e\nGPU 1: NVIDIA H20-3e\nGPU 2: NVIDIA H20-3e\nGPU 3: NVIDIA H20-3e\nGPU 4: NVIDIA H20-3e\nGPU 5: NVIDIA H20-3e\nGPU 6: NVIDIA H20-3e\nGPU 7: NVIDIA H20-3e\n\nNvidia driver version: 550.144.03\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.11.0\n/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.11.0\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      52 bits physical, 57 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             240\nOn-line CPU(s) list:                0-239\nVendor ID:                          GenuineIntel\nModel name:                         Intel(R) Xeon(R) 6759P-C\nCPU family:                         6\nModel:                              173\nThread(s) per core:                 2\nCore(s) per socket:                 60\nSocket(s):                          2\nStepping:                           1\nBogoMIPS:                           5200.00\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities\nHypervisor vendor:                  KVM\nVirtualization type:                full\nL1d cache:                          5.6 MiB (120 instances)\nL1i cache:                          7.5 MiB (120 instances)\nL2 cache:                           240 MiB (120 instances)\nL3 cache:                           640 MiB (2 instances)\nNUMA node(s):                       2\nNUMA node0 CPU(s):                  0-119\nNUMA node1 CPU(s):                  120-239\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Not affected\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Mitigation; TSX disabled\n\nVersions of relevant libraries:\n[pip3] Could not collect\n[conda] Could not collect",
  "transformers_version": "4.57.1",
  "lm_eval_version": "0.4.9.1",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "<unk>",
    "0"
  ],
  "tokenizer_eos_token": [
    "</s>",
    "2"
  ],
  "tokenizer_bos_token": [
    "<s>",
    "1"
  ],
  "eot_token_id": 2,
  "max_length": 4096
}

I want to know are there any additional configurations need to set before testing humaneval bench mark for llama2-70b-hf ? Please!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions